

Basics of Boardwalk Design

Andrew Craig, PE Permatrak Concrete Boardwalks Director of Engineering **John Pyle, PE** PermaTrak Concrete Boardwalks VP of Sales & Marketing **Carrie Parada, PE** PermaTrak Concrete Boardwalks Project Consultant

Agenda

- Boardwalk Planning & Design
- Foundation Selection
- Material Selection
- Case Studies

Boardwalk Planning & Design

Define Boardwalk Location

Typical Precast Concrete Section

Typical Precast Concrete Section

• Abutment

Beams

• Curb

• Treads

• Piers

Typical Timber Section

Typical Composite Section

Define Clear Width

Determine Design Code

AASHTO LRFD Bridge Design Specifications AASHTO LRFD Guide Specifications for the Design of Pedestrian Bridges, 2nd Edition, with 2015 Interim Revisions

IBC (Refers to ASCE for Loads)

Vertical Loads

AASHTO:

- Uniform = 90 PSF
- Vehicle
 - 5,000 LB>
 - H5 (10,000 LB.)
 - H10 (20,000 LB.)

IBC:

• 60 to 100 PSF

A single truck shall be placed to produce the maximum load effects and shall not be placed in combinations with the pedestrian load. The dynamic load allowance need not be considered for this loading.

Table 3.2-1—Design Vehicle

Clear Deck Width 7 to 10 ft Over 10 ft	Design Vehicle				
7 to 10 ft	H5				
Over 10 ft	H10				

Live Load of 100 psf

Lateral Loads - Wind

Lateral Loads - Seismic

Other Loads

- Braking = 25% of Design Truck Axle Load
- Snow
- Water (submerged boardwalks)
- Temperature

Load Combinations

Table 3.4.1-1—Load Combinations and Load Factors

	DC								s	Use One of These at a Time				
	DD								1					
	DW													
	EH													
	EV	LL												
	ES	IM												
	EL	CE												
Load	PS	BR												
Combination	CR	PL												
Limit State	SH	LS	WA	WS	WL	FR	TU	TG	SE	EQ	BL	IC	CT	CV
Strength I	γ_P	1.75	1.00	_	_	1.00	0.50/1.20	γtg	ΥSE]	_	
(unless noted)														
Strength II	γ_P	1.35	1.00	1	-	1.00	0.50/1.20	γTG	YSE		-	1000		
Strength III	γ_P		1.00	1.00		1.00	0.50/1.20	γτG	ΥSE		-		-	-
Strength IV	γ_P	_	1.00	_		1.00	0.50/1.20							
Strength V	γ_P	1.35	1.00	1.00	1.00	1.00	0.50/1.20	γtg	ΥSE		l	l	-	
Extreme	1.00	γεQ	1.00	_	-	1.00	_		ĺ	1.00	1	l		
Event I														
Extreme	1.00	0.50	1.00	1		1.00	-	<u> </u>	I		1.00	1.00	1.00	1.00
Event II												1000000000		
Service I	1.00	1.00	1.00	1.00	1.00	1.00	1.00/1.20	<i>ΥTG</i>	ΥSE		l	l	_	_
Service II	1.00	1.30	1.00	—	_	1.00	1.00/1.20		j.	_	-	l	-	
Service III	1.00	γ_{LL}	1.00	-	_	1.00	1.00/1.20	γTG	ΥSE		1	I	_	_
Service IV	1.00		1.00	1.00	2000	1.00	1.00/1.20	<u> </u>	1.00	<u>10</u>				100
Fatigue I—		1.75			<u> 10 10</u>	l,		1	l.	<u></u>		1		
LL, IM & CE														
only														
Fatigue II-	-	0.80						2 <u>-</u> 2		<u></u>	-			
LL, IM & CE														
only														

If you only remember one.... 1.25 DL + 1.75 LL

Reinforced Concrete Design

$$\phi \mathbf{M}_{\mathbf{n}} = \phi \mathbf{A}_{\mathbf{s}} f_{\mathbf{y}} (\mathbf{d} - \mathbf{a}/2)$$

Timber Design

Composite Design

Importance of Good Specifications

- Sets clear quality standards
- Ensures fair product competition
- Protects against inferior alternatives

Foundation Selection

First Step: A Geotechnical Report!

- Geotechnical investigations are crucial for successful boardwalk foundations
- Different foundation types require specific geotechnical data for design
- Proper foundation design ensures smoother installation and better outcomes

Foundation Selection

- Timber Piles
- Composite Piles
- Drilled Shaft
- Driven Steel Piles
- Steel Helical Piles
- Driven concrete piles
- Concrete piers
- Cast-in-place spread footings

Deep Foundations

Timber Piles

Fiberglass Composite Piles

Drilled Shaft or Concrete Caissons

Driven Steel Piles (H-Piles)

Steel Helical Piles (Screw Piles)

Driven Concrete Piles

Shallow Foundations

Precast Concrete Piers

Cast-in-Place Concrete Footings

Handrail vs. Curb

Do I Need a Handrail?

Handrail Design Loads

AASHTO 50 PLF <mark>+</mark> 200 LB.

IBC 50 PLF <mark>OR</mark> 200 LB.
Handrail Options

Handrail Cost

Constructability Considerations

Typical Construction Approaches

- Traditional from adjacent ground
- Foundations installed from ground with boardwalk installed top-down
- Full-top down with no equipment on the ground

Top-Down Construction

Top-Down Construction Video

Material Selection

Material Selection

Timber vs. Composite vs.

Precast Concrete

- Slip Resistance
- ADA Compliance
- Durability
- Aesthetics
- Environmental

Slip Resistance

Slip Resistance Testing Report

BOT-3000E Tribometer on PermaTrak PermaGrip Boardwalk Surface Texture

> Prepared for: PermaTrak Charlotte, North Carolina

Prepared by: Theorem Geo Associates Engineering, PLLC Charlotte, North Carolina

December 2020

Slip Resistance

Precast concrete textures perform well in wet environments!

Vertical and horizontal boardwalk gaps must remain ADA-compliant

Durability

- **Timber:** Potential swelling, rotting and warping, leading to ADA compliance and safety issues
- **Composite:** Vulnerability to mold and algae, especially under heavy shade.
- **Precast concrete:** 50-75 year design life, no maintenance

When it comes to durability, timber has issues with swelling, rotting & warping.

Aesthetics

- **Timber:** Traditional boardwalk look and feel; however tendency to rot and swell can lead to eyesores (and safety issues)
- **Composite:** Very common for outdoor residential decking, can be used to replicate the look and feel of traditional boardwalk
- **Precast concrete:** Multiple colors & textures available to align aesthetics with goals of project

Environmental

- **Timber:** Pressure-treated timber can contain chemicals that leach into soils.
- **Composite:** Eco-friendly, biologically inert material, not chemically treated. That being said, it is non-renewable and non-biodegradable.
- **Precast concrete:** Eco-friendly, not chemically treated

Case Studies & Applications

3 Mile Creek Greenway– Mobile, AL **Designer: Di**x Hite & Partners **Owner: City of Mobile**

Davis Dr– Winston Salem, NC **Designer:** Stimmel Associates **Owner:** Wake Forest University

Main St.- Broussard, LA Designer: Duplantis Design Group Owner: City of Broussard

Flat Branch Nature Preserve – Charlotte, NC Designer: Henson Foley Owner: Mecklenburg County

Dayton Ave – Shoreline, WA Designer: Osbourne Consulting Owner: WSDOT www.saveshorelinetrees.com

Boardwalks

South Lake Tahoe Greenway – South Lake Tahoe, CA Designer: El Dorado County Owner: California Tahoe Conservancy

Galveston Island State Park Dune Crossing- Galveston Island, TX Designer: SWA Group Owner: Millis Development & Construction

Lakes & Lagoons

Logan Lake Boardwalk at Adams Park – Sumter, SC Designer: Pond and Company Owner: Park Pride

Observation Decks

Judaculla Rock – Cullowhee, NC Designer: Equinox Environmental Owner: Jackson County, NC Parks & Recreation

Stream Crossings

Lake Lawne Regional Stormwater Facility - Orlando, FL Designer: CPWG Engineering Owner: Orange County Parks and Recreation

Owner: City of Cleveland

Wetlands & Floodplains

Louisiana Children's Museum – New Orleans, LA Designer: Mithun Owner: Louisiana Children's Museum

Fishing Piers

Harborwalk – Charlotte County, FL Designer: Kimley-Horn Owner: Charlotte County, FL ALTRA PROFESSIONAL ALTRA PLANT ALTRA

Multi-Use Trails

Shot Pouch Greenway – Sumter, SC Designer: Alta Owner: City of Sumter

Multi-Use Trails

White Oak Greenway – Cary, NC Designer: Kimley Horn Owner: Town of Cary

Multi-Use Trails

Upper Tampa Bay Trail – Tampa, FL Designer: Cardno TBE Owner: Hillsborough County, FL

Curved Alignments

Spencer Creek – St. Peters, MO

Boardwalk Along Street – Cantilevered Boardwalk

1

Elliott Way – Croton-On-Hudson, NY

Harsh Climates

Pikes Peak - Colorado Springs, CO

i ma i

DOT Projects

- VDOT
- INDOT
- ILDOT
- WSDOT
- NYSDOT
- CALTRANS
- & OTHERS

Boardwalk Replacements

Before

After

Lilburn, GA – Camp Creek Greenway

Contact: Carrie Parada, P.E. cparada@permatrak.com

Learn more at www.permatrak.com